
Prospex: Protocol Specification Extraction

Paolo Milani Comparetti∗, Gilbert Wondracek∗, Christopher Kruegel† and Engin Kirda‡

∗Vienna University of Technology

{pmilani,gilbert}@seclab.tuwien.ac.at
†University of California, Santa Barbara

chris@cs.ucsb.edu
‡Institute Eurecom

engin.kirda@eurecom.fr

Abstract

Protocol reverse engineering is the process of extracting

application-level specifications for network protocols. Such

specifications are very useful in a number of security-related

contexts, for example, to perform deep packet inspection and

black-box fuzzing, or to quickly understand custom botnet

command and control (C&C) channels. Since manual re-

verse engineering is a time-consuming and tedious process,

a number of systems have been proposed that aim to auto-

mate this task. These systems either analyze network traffic

directly or monitor the execution of the application that

receives the protocol messages. While previous systems show

that precise message formats can be extracted automatically,

they do not provide a protocol specification. The reason is

that they do not reverse engineer the protocol state machine.

In this paper, we focus on closing this gap by presenting

a system that is capable of automatically inferring state

machines. This greatly enhances the results of automatic

protocol reverse engineering, while further reducing the

need for human interaction. We extend previous work that

focuses on behavior-based message format extraction, and

introduce techniques for identifying and clustering different

types of messages not only based on their structure, but also

according to the impact of each message on server behavior.

Moreover, we present an algorithm for extracting the state

machine. We have applied our techniques to a number of

real-world protocols, including the command and control

protocol used by a malicious bot. Our results demonstrate

that we are able to extract format specifications for different

types of messages and meaningful protocol state machines.

We use these protocol specifications to automatically gen-

erate input for a stateful fuzzer, allowing us to discover

security vulnerabilities in real-world applications.

1. Introduction

Reverse engineering is the process of analyzing a device

or a system to understand its structure and functionality.

In the context of network protocols, reverse engineering de-

scribes the process of deriving the application-level protocol

specification of an unknown protocol. To this end, an analyst

can monitor the exchange of messages over a network or

observe how the communication end-points (such as client

and server) process network input. The detailed knowledge

of a protocol specification is important for addressing a

number of security problems.

Given a protocol specification, it can be used to generate

protocol fuzzers [1] that perform black-box vulnerability

analysis of network applications. In fact, many vulnera-

bilities have been found in the past that resulted from

programming errors in protocol parsing code [2]. More-

over, detailed protocol specifications are required by intru-

sion detection systems (e.g., Bro [3]) that perform deep

packet inspections. Also, the ability to generate protocol

specifications is useful for generic protocol analyzers that

require protocol grammars as input (e.g., binpac [4] and

GAPA [5]). Furthermore, protocol reverse engineering can

help to identify (subtle) variations in the way that different

applications implement the same protocol. These differences

can be used for application fingerprinting [6] or to discover

security vulnerabilities [7]. Finally, the analysis of malware

is another important area where protocol reverse engineering

can be applied. Botnets [8] increasingly make use of non-

standard communication protocols [9], [10]. For a security

analyst who attempts to understand and take down botnets,

the ability to automatically reverse engineer the command

and control protocol is clearly helpful.

In general, reverse engineering is largely a manual, te-

dious, and time-consuming process. To support a human

analyst with this task, a number of automatic protocol

reverse engineering techniques have been proposed. These

techniques aim to automatically generate the specifications

of an application-level protocol. Two possible input sources

can be used to analyze a protocol: network traffic and an

application that implements the protocol.

A number of approaches [11]–[14] have been presented

that use network traffic as input. These systems typically

analyze traces generated by recording the communication

between a client and a server. Then, heuristics are applied

to extract different protocol fields and delimiters. Although

useful in practice, the precision of these systems is often

limited. That is, it is not always possible to extract all

required information about a protocol from the network

traffic alone. To address the limited precision of techniques

that operate directly on the network traces, a number

of systems [15]–[18] were introduced that focus on the

(server) application. More precisely, these systems operate

by observing the execution of the application while it is

processing input messages. This allows them to infer the

structure of a message (i.e., its constituent fields) with

higher precision, and it provides insight into field semantics

that are not available to network-trace-based approaches. A

common property of all previous systems (whether network-

or behavior-based) is that they only extract the format of

individual protocol messages.That is, these systems do not

aim at reverse engineering the protocol state machine, and,

therefore, cannot produce specifications for stateful network

protocols.

In this paper, we introduce Prospex (Protocol Specifi-

cation Extraction), a system that can automatically infer

specifications for stateful network protocols, i.e. including

state machine information. To the best of our knowledge, this

is the first system with this capability. Our analysis builds

upon a system introduced in previous work [17], which can

extract the format specifications of individual messages by

monitoring the application as it processes its inputs. For

this paper, our system was extended in two main directions.

First, we developed a mechanism to identify messages of the

same type. This information is leveraged to combine similar

messages into clusters. The second extension is related to

the inference of a protocol state machine. The protocol state

machine encodes all sequences of messages that are permit-

ted by the protocol. Information about the state machine is

required to be able to engage in a “meaningful” conversation

with a communication partner, e.g., knowing when a certain

message can be sent.

In summary, the contributions of this work are the fol-

lowing:

• We propose several features to determine when two

messages in a network session are similar. These fea-

tures take into account not only the format of messages,

but also the effect that receiving each message has

on server execution. This allows us to automatically

identify and cluster messages of the same type. Auto-

matically recognizing different message types allows us

to use a set of messages of the same type to generate

a corresponding message format specification.

• We present a technique to automatically infer the proto-

col state machine. This state machine specifies the order

in which messages can be exchanged, given no prior

knowledge about the protocol under analysis. We fur-

ther show that our technique consistently outperforms

existing approaches for state machine inference.

• We applied our system to a number of real-world

applications that implement complex, stateful protocols.

The results demonstrate that our techniques are capable

of extracting meaningful message formats and protocol

state machines. This is true both for protocols used by

benign applications (such as SMTP, Samba, or SIP) and

protocols used by malicious software (such as the C&C

protocol used by Agobot).

• We leverage the output of our system to automatically

produce protocol specifications for the open-source

Peach fuzzing platform [19]. To this end, we actively

contributed to the development of Peach and extended

its support for stateful protocols. Running Peach with

our specifications allowed us to automatically find

vulnerabilities in real-world applications.

2. System Description

The input to our system are a number of application

sessions. An application session is a connection between

hosts that allows the involved machines to exchange data.

Each session typically consists of a sequence of messages.

Each of these messages has a message type, which is defined

by a message format specification. The message format

specifies the structure of a message, typically as a number

of fields. The structure of the whole application session is

determined by the protocol state machine. The protocol state

machine defines the order in which messages of different

types can be sent.

The objective of our system is to automatically infer the

specification of an unknown protocol that a client uses to

communicate with a server. More precisely, given a sequence

of messages that a client sends to a server, we are interested

in the specifications of these messages, as well as the

protocol state changes that these messages result in.

To this end, our system proceeds in several phases, as

shown in Figure 1.

Dynamic taint analysis. In this phase, dynamic data tainting

is used to observe the application as it processes incoming

messages. The resulting execution traces show the operations

performed on data that was read from the network.

Session analysis. Initially, we analyze these execution

traces, splitting them into individual messages. Then, we

perform message format inference on each message, result-

ing in detailed format specifications for single messages.

Message clustering. We extract a number of features for

each message from the execution trace. These features take

into account the previously inferred message formats as well

as the effect of each message on the application’s behavior.

The similarity between messages is determined using these

features. Then, we apply the partitioning around medoids

I npu t da ta

Control led

env i ronment

Application

Message

format

inference

Execution

trace

analysis

Feature

extract ion

Clustering

State

machine

minimizat ion

State

labeling

Session analysis Message clustering
State machine

inference

Execution

traces
Messages

Dynamic taint analysis

Clusters

Figure 1. System overview.

(PAM) clustering algorithm [20] to group similar messages

into types. Finally, we derive a generalized message format

specification for each type.

State machine inference. In this phase, we infer a state ma-

chine that models the order in which messages of different

types may be sent. Initially, we construct a state machine that

accepts exactly the sequences of messages observed during

training. Then, we use a novel algorithm, based on domain-

specific heuristics, to label the states of this state machine.

States that may be similar are assigned identical labels.

Finally, we apply the Exbar [21] algorithm to produce a more

general, minimal state machine by merging similar states.

Together with the generalized message format specifications

for the different types of messages, this minimal state

machine represents the reverse-engineered network protocol.

Fuzzing. Optionally, our tool can translate the extracted

protocol specifications into input for the Peach fuzzing

platform [19]. As we will show in Section 3, this allows

Peach to test code that is only accessible in later protocol

stages, finding “deeper” security vulnerabilities in real-world

applications.

2.1. Session Analysis

The purpose of the session analysis phase is to auto-

matically retrieve the message format specifications for the

messages that are passed between client and server within an

application session. To this end, we leverage an observation

that was exploited in previous work [15], [17] for the

analysis of individual messages. This observation suggests

that it is advantageous to monitor how a program processes

its input messages instead of analyzing the traffic that is

exchanged between hosts at the network-level, because this

allows more precise inference of message formats. By using

dynamic taint analysis [22]–[24], we can precisely track how

the application, which “understands” the messages and im-

plements the protocol state machine, handles input data. As

a result of the session analysis phase, we obtain a sequence

of messages for an application session, each represented as a

tree of high-level messages fields. Previous work on message

format inference includes systems that analyze either single

inputs [15], [16] or, more generally, multiple inputs [17],

[18]. Our current implementation extends work from [17]

and automatically splits sessions into sequences of messages.

Thus, the need for human assistance during this phase is

removed.
Like previous work, our system is not capable of reverse

engineering encrypted traffic. While this is an intrinsic

limitation of approaches that only analyze network traffic, it

could be overcome by systems that observe server behavior.

For this, one could manually or automatically [25] identify

buffers that hold decrypted messages and then use these

buffers as a starting point for the analysis.

The following paragraphs outline the steps performed by our

system to retrieve the message formats.

Recording execution traces. Initially, we execute the appli-

cation that implements the protocol that we are interested in

(e.g., a server program). The program is run in a controlled

environment that supports dynamic data tainting [22]–[24].

This allows us to record all operations that involve data read

from protocol messages. Then, we engage the server in a

series of application sessions, typically by connecting with

a client program, performing some common tasks.
In this paper, we limit ourselves to the analysis of the

communication in a single direction. That is, we infer the

protocol state machine only for one of the communication

partners. Also, we only determine the specifications of the

messages that this communication partner receives. For ease

of presentation, we will refer to this communication partner

as “server,” and to the other as “client.” Note that it would

be possible to use our techniques to simultaneously monitor

both the client and the server, eventually combining the two

different state machines and sets of message formats.

With dynamic data tainting, the system assigns a unique

label to each input byte and tracks the propagation of these

labels throughout the execution of the program. The output

of this step is, for each application session, an execution

trace that contains all executed instructions as well as the

taint labels of all instruction operands.

Splitting a session into messages. The execution traces that

we record contain all instructions that are executed during an

application session. As the next step, this trace needs to be

split according to the individual messages. Since we assume

no prior knowledge of message boundaries, we use a simple

heuristic: The first message starts with the first input byte

that the server receives. All subsequent input is considered to

be part of this message. This continues until the server writes

data to the socket from where it had received the input (that

is, the server sends a reply). The next byte received from the

client is considered to denote the start of the next message.

This is repeated until all execution traces are split into

segments, where each segment corresponds to one message.

While this approach is not fully general, it is significantly

more accurate than considering each network packet as a

message by itself. The reason is that clients sometimes break

a message into several packets (for example, interactive

protocols). The server collects these packets until a complete

message has arrived before a response is sent. Our heuristic

correctly handles this case and combines multiple packets

into a single message.

Inferring message formats. Once our system has identified

an execution trace segment for each protocol message, we

use the techniques presented in previous work [15], [17]

to determine the format of each message. Using these

techniques, we analyze an execution trace segment and split

the corresponding message into fields. As a result, each

message is represented as a tree of fields with associated

semantics (i.e., delimited field, length field, pointer field,

keyword, file name, etc.). The output of the session analysis

step is a sequence of messages for each application session.

Each message is represented as a tree of nested fields.

2.2. Message Clustering

After the session analysis phase, the system has extracted

a format specification for every individual message. How-

ever, there is no information about similarities between

messages or their types.

Previous systems that perform message format inference

operate on messages of a single, known type. However,

our goal is to infer a protocol specification assuming no

prior knowledge about message types (in fact, we do not

even know a priori how many message types there are for

a certain protocol). Therefore, we require a step that can

recognize the types of different messages.

Thus, the goal of the message clustering phase is to assign

a type to each message. To this end, we define a metric of

similarity between messages, and use it to cluster together

similar messages. Our similarity metric is based on the

assumption that messages of the same type share similar

message formats and that the server “reacts” in a similar

fashion upon receiving them. Thus, in addition to comparing

message formats, we propose a number of similarity features

that are based on the analysis of the application’s actions as

it processes different messages. Once all similar messages

are clustered, we label each cluster (and all corresponding

messages) with a type.

By assigning types to messages, we can operate on a

more abstract representation of protocol sessions. Moreover,

for each cluster, we generate a generalized message format

specification that describes all messages in this cluster.

2.2.1. Feature Extraction and Similarity Computation.

To be able to cluster related messages, we require a way to

assess their similarity. For this, we introduce a number of

features and corresponding distance functions that allow our

system to calculate the similarity between two messages.

These features can be divided into three groups that are

discussed in the following paragraphs. For each feature, we

compute a normalized similarity score between 0 (meaning

completely different) and 1 (meaning identical).

Input similarity. Clearly, when comparing two messages,

the structure and order of the fields that these messages

are composed of play an important role. That is, we would

assume that two messages of the same type also contain

similar fields in a similar order. To capture this intuition,

we use a sequence alignment algorithm (the Needleman-

Wunsch algorithm [26], to be more precise). The goal of this

algorithm is to take two sequences as input and find those

parts that are similar, respecting the order of the elements.

These similar parts are then aligned, exposing differences or

missing elements in the sequences. In our case, we use the

sequences of fields that each message is composed of. For

more details on how the comparison between two messages

is implemented, we refer the reader to [17].

Execution similarity. In addition to the format of the input

messages, we also expect that messages of the same type are

handled by similar code in the application. That is, when a

message of a certain type is received and processed, we as-

sume that the program uses the same code fragments, library

calls, and system calls, at least to a certain degree. This

intuition is captured by the following execution similarity

features, which can be directly derived from the recorded

execution traces.

• System call feature: This feature takes into account the

types of system calls (as indicated by their system call

number) that were invoked during the processing of a

message. These system calls are stored as a set, that is, the

order is not taken into account for this feature.

• Process activity feature: This feature is related to the

system call feature, but focuses on system calls related to

the generation or destruction of processes (such as clone

and kill). Process-activity-related system calls are typically

very indicative for the behavior of an application. When

considered together with all other system calls (as part of

the previous feature), these calls would not have sufficient

weight in the similarity calculation.

• Invoked function feature: For this feature, we store in a

set the target addresses of call operations that are executed

during the processing of a message (if these addresses are

within the application’s text segment).

• Invoked library functions feature: This feature is used to

track (dynamically-linked) library calls that are made by an

application. To capture this feature, we record the target

addresses of call operations that are outside the program’s

text segment. In the case of statically-linked binaries, we

would recognize a library call as a regular function call.

• Executed addresses feature: For this feature, we use the

set of addresses of instructions that are executed by the

application while it is processing a specific message (if these

addresses are within the application’s text segment).

For each of the execution features listed above, we record

a set of numbers or addresses that are associated with a

certain message. To compare two messages, we employ the

Jaccard index [27] to determine the similarity between two

features, defined as:

J(a, b) =
|a ∩ b|

|a ∪ b|

In the equation above, a is the set of elements associated

with a feature of the first message, while b is the set that

represents the same feature of the second message. Clearly,

J(a, b) yields 0 when the sets are disjoint and 1 when they

are identical. Note that we calculate five execution similarity

scores, one for each of the five execution features.

Impact similarity. The last group of features captures

the response of the server to a message that is received.

Typically, a server application will execute a series of actions

when receiving a (legitimate) request from a client. The goal

of the following two impact similarity features is to represent

some of these actions at a high level of abstraction.

• Output feature. This feature captures the output behavior

of the server while processing a message. In particular, we

are interested in all system calls that cause the server to

write out data. More precisely, we consider the following

four destinations for data write operations: the socket to

which the client is connected, other network sockets, files,

and the terminal. The socket to which the client is connected

captures cases in which data is returned to the client (thus

ending the message, as explained in Section 2.1), while other

network sockets refer to cases in which a server sends data

over a different connection. File and terminal destinations

simply represent operations where the application writes data

to one of these sinks.

For each write operation, we also analyze the taint status

of the data that is written. This allows us to distinguish be-

tween operations that write tainted data (i.e., data previously

received from the client) and those that write other data. We

then label each byte of output with a tuple 〈sink, tainted〉
that specifies where the data was written to and whether

it was tainted or not. The output feature is represented

by a sequence of such tuples, with consecutive duplicates

removed.

Finally, we use the Needleman-Wunsch sequence alignment

algorithm to compare output sequences, as for the input

similarity. The result is the output similarity score.

• File system feature. This feature captures the file system

activity of the server when handling an input message.

Therefore, we consider system calls that perform file system

actions, such as opening or closing a file, or obtaining

information about a file or directory. In a first step, we

represent the file system activity as a set of 〈operation, path〉
tuples, where operation is one of {open, close, read, write,

rename, stat, mkdir, rmdir}, and path is the path of the

file that the system call operates on.

The name of the file or directory on which a system call

operates may be specific to the individual execution trace,

and, therefore, needs to be generalized. Specifically, we look

for prefixes of the path that are either hardcoded in the binary

(by scanning for strings in the program’s file on disk) or are

found in one of the program’s configuration files (if provided

by an analyst). We can also detect those parts of a path

that are tainted, and as such, represent a parameter of a

client request. To perform generalization of a path, we first

attempt to look for the longest prefix that matches a string

that is found in the binary. The remaining parts are then

replaced with one of the special tokens TAINT, CONFIG, or

VARIABLE. The VARIABLE token is used for all parts that

are neither tainted nor appear in a configuration file.

As a result of the previous step, the file system

feature is represented by a set of tuples, for

example, 〈open, ”/CONFIG/TAINT”〉 or 〈write,

”/var/log/samba/VARIABLE”〉. To compute the similarity

measure between the file system features of two messages,

we use the Jaccard index, as for the execution similarities.

2.2.2. Clustering. Based on the features and similarity

functions described in the previous section, we compute the

distance between a pair of messages a and b as d(a, b) = 1−∑
i wisi(a, b), where si is the similarity measure for feature

i, and
∑

i wi = 1. The weights wi are selected in such a

way that each of the three groups of features described above

has the same overall weight of 1

3
, and that features in the

same group have equal weight. Once a distance matrix is

computed, we can use off-the-shelf clustering techniques to

classify our data. Specifically, we employ the partitioning

around medoids (PAM) algorithm [20].

Like most partitioning-based clustering techniques, the

PAM algorithm takes as input the number k of clusters to

generate. To determine a suitable value for k, we employ a

generalization of the Dunn index. The Dunn index [28] is a

standard intrinsic measure of clustering quality, defined as:

D(k) =
min1≤i≤k{min1≤j≤k{δ(Ci, Cj)}}

max1≤i≤k{∆(Ci)}
(1)

where C1, .., Ck are the clusters, ∆(Ci) is the diameter of

cluster Ci, and δ(Ci, Cj) is the distance between the two

clusters. Since the numerator of Equation 1 is a measure of

cluster separation, while the denominator is a measure of

cluster compactness, k should be chosen so that the Dunn

index is maximized. To compute the distance between two

clusters (δ in Equation 1), we use the single-linkage distance

defined as δ(Ci, Cj) = mina∈Ci,b∈Cj
{d(a, b)}. To compute

the diameter of a cluster (∆ in Equation 1), we use one of

the measures defined in [29], which is based on Relative

Neighborhood Graphs. Once clustering has been performed,

we derive a format specification for each message type by

merging the formats of all messages in the corresponding

cluster. This merging step leverages techniques from [17].

2.3. State Machine Inference

The previous clustering phase identifies similar messages

in application sessions, assigning a different type to each

cluster. As a result, each session si can be represented as

a sequence Si = (σ1, .., σh), where σ1, .., σh ∈ M and M

is the set of message types. The goal of the state machine

inference phase is to infer an acceptor machine that can

recognize sequences of message types that represent valid

sessions of the protocol under analysis. Unfortunately, this

problem cannot be solved exactly, even if we assume that

the language comprising all valid sequences is a regular

language. The reason is that Gold [30] has proved that a

regular language cannot be learned from positive examples

only. Moreover, the problem is even more difficult for more

powerful languages.

A commonly-used approach to infer a regular language

from a labeled training set (a labeled training set is a

set of example strings, labeled accept or reject), is to

find the smallest automaton that is consistent with that

training set [31]. Such an approach selects the simplest,

most-generic hypothesis consistent with the observations.

Unfortunately, this technique cannot be directly applied to

our problem. The reason is that only positive examples are

available (all sessions are labeled accept), therefore, the

minimal automaton consistent with our training set accepts

all possible sequences of message types. To avoid such an

over-generalization, we need to restrict the hypothesis space

using domain-specific knowledge.

2.3.1. Augmented Prefix Tree Acceptor (APTA). As men-

tioned previously, the input to the state machine inference

phase is a set Λ of message sequences Si, where each Si

represents one observed application session. In a first step,

we can represent the set Λ as an augmented prefix tree

acceptor (APTA) T [31].

An APTA is an incompletely-specified deterministic fi-

nite state automaton (DFA), with a state transition graph

that is a tree. The root of the tree is the initial state

of the DFA, and each branch represents an application

session. As an example, consider that we observe two

application sessions of the Agobot malware. The sequences

of the message types of these two sessions are: (login,

bot.dns, bot.status, mac.logout) and (login, mac.logout,

login, bot.status, bot.dns, mac.logout). The APTA for this

example is shown in Figure 2. States of T may be labeled

either accept, or reject. In our example, all states are labeled

accept (marked with an “A”) because any prefix of a valid

protocol session is also a valid session (if this were not

the case, only the two final states would be accept states,

and other states would be unlabeled). T is an incompletely-

specified acceptor DFA that accepts only the sequences in

the training set (and their prefixes). For any other sequence,

the result is unspecified.

The APTA T is used as a starting point to find the protocol

state machine. This is done by finding the minimal DFA

that is consistent with T . To find such a DFA, we can

leverage existing algorithms (such as Exbar [21]) that start

from T and successively merge pairs of states. Clearly, states

with different labels can never be merged. However, in our

training set, all states of T are labeled accept. Thus, the

result of directly applying an existing algorithm would be an

over-general DFA with only a single state. To address this

problem, we introduce an algorithm that assigns different

labels to the states of T (discussed in the next Section 2.3.2).

This restricts the possible merges, since only states with

the same label may be merged. Finally, we use Exbar to

obtain a minimal DFA that is consistent with that labeling,

as discussed in Section 2.3.3. This minimal DFA represents

our state machine.

2.3.2. State Labeling Algorithm. The goal of the state

labeling algorithm is to find states in the APTA that are

different. By assigning different labels to these states, we

can prevent them from being merged. To this end, we lever-

age the observation that a common pattern in application

layer network protocols is that a message or a sequence

of messages must be sent before the server can perform

certain actions. As an example, in the Agobot command and

control protocol, a login is required before other commands

become available. In SMB/CIFS, a “TREE CONNECT”

operation must be performed to connect to a share before

file operations can be issued. In addition, certain commands

may lead the server away from a state where it can perform

these actions. For instance, a logout command in Agobot or

a “TREE DISCONNECT” in SMB/CIFS make previously

available commands impossible to execute.

A A
login

Abot.dns

A

mac.logout

A
bot.status

A
mac.logout

A
login

A
bot.status

A
bot.dns

A
mac.logout

Figure 2. APTA for the Agobot example.

Our state labeling algorithm attempts to identify states

that represent similar application conditions. That is, we

attempt to identify cases in which an application can process

similar commands, based on the sequence of messages that it

previously received. To this end, we extract simple patterns

from the observed application sessions. These patterns have

the form of regular expressions on sequences of message

types. More precisely, each pattern has the form:

. ∗ r(a1|..|aj)∗, (r, a1, .., aj ∈ M) (2)

where “∗” means zero or more repetitions of the previous

term and “.” matches any message type. We call such a

pattern a prerequisite.

A prerequisite requires that, for the server to be in a state

where it can meaningfully process a message of type m, it

must first receive a message of type r, optionally followed

only by messages in the set Ar = a1, .., aj .

The message of type r is a message that always occurs

before m. That is, in all application sessions, a message of

type r was found before m. This is to capture the case where

a connect or login message must be sent before message m.

Note that Equation 2 allows messages of any type to occur

before r (including more occurrences of r).

The set of optional messages Ar is the set of all messages

that, in at least one application session, have been seen be-

tween the last occurrence of r and a message of a type m. In

the Agobot example, login always occurs before messages

in the set Mlogin = {bot.dns, bot.status, mac.logout}.

Furthermore, only bot.dns and bot.status occur between

the last login and messages in the Mlogin set. Therefore, the

prerequisite .*login(bot.dns|bot.status)∗ will be added for

all three message types in Mlogin. We provide a more precise

description of our algorithm for inferring prerequisites in

Appendix A.

Once all prerequisites have been computed, we label each

state q of T with the set of message types that are allowed as

input in that state. A message type m is allowed in a state q if

the sequence of message types leading to q exactly matches

all prerequisites for m (since T is a tree, there is only one

path leading from the root to state q). The labeled state tree

for the Agobot example is shown in Figure 3.

Hitting set heuristic. The technique described above fails

to detect a prerequisite for a message m when there are

multiple, alternative paths to a state where m is allowed.

As an example, in an SMTP session, either HELO or

EHLO may be the first message, but one of these two

is required before a RCPT TO message may be sent.

Furthermore, even if there is only one login message type

according to the specification of a protocol, this message

type may be split into several clusters by our tool (for

instance, when the login message can have significantly

different, optional parameters). To be able to handle such

situations, we generalize Equation 2 and infer prerequisites

in the form:

. ∗ (r1|..|rk)(a1|..|aj)∗ (3)

That is, we require only one of the messages r1, .., rk to be

present in a session before m can be received. To infer such

prerequisites, we generalize the algorithm described above,

as detailed in Appendix A.

End-state heuristic. In addition to the techniques described

previously, we also use a simple heuristic to detect end-states

in the protocol state machine. It is common for application

layer protocols to have one (or more) message types that

request the termination of the protocol session. To detect

those message types, we simply look for messages that,

throughout all observed application sessions, appear only

last in a session. In T , we mark all states that follow such

messages as end-states, setting their label to the empty set

(since no messages of any type are allowed in those states).

2.3.3. Exbar. Based on a state tree (APTA) that is labeled

by our heuristics, we can now infer a minimal DFA. The

problem of deriving the smallest DFA consistent with a

labeled training set is an important problem in grammar

inference, and has been proven NP-complete by Gold [32].

Both approximate and exact algorithms have been proposed

to solve it (see [31] for an up to date survey of existing tech-

niques). Exbar [21] is the state-of-the-art, exact algorithm for

minimal consistent DFA inference. Thus, we apply Exbar to

the state tree T , once it has been labeled by the previously-

discussed algorithm. The result is the generalized protocol

state machine.

The state machine for the Agobot example (Figure 3) is

shown in Figure 4. Here, we have once more replaced the

state labels with accept. Once this generalization phase is

complete, we assume that any sequence of message types

that leads to an unspecified state transition is not a valid

protocol session. Therefore, we add an additional reject state

(not shown in Figure 4) to the state machine, and make

it the endpoint for all unspecified transitions. In the state

machines shown throughout this work, this reject state is

also omitted for ease of presentation. In Section 3.5, we

evaluate the performance of Exbar on our datasets.

{login}

{login,

mac.logout,

bot.status,

bot.dns}

login

{login,

mac.logout,

bot.status,

bot.dns}
bot.dns

{login}

mac.logout

{login,

mac.logout,

bot.status,

bot.dns}

bot.status
{login}

mac.logout

{login,

mac.logout,

bot.status,

bot.dns}

login

{login,

mac.logout,

bot.status,

bot.dns}

bot.status

{login,

mac.logout,

bot.status,

bot.dns}

bot.dns
{login}

mac.logout

Figure 3. Labeled State Tree for Agobot example.

A A
login

mac.logout

bot.dns

bot.status

Figure 4. Inferred state machine for Agobot example.

2.4. Creating Fuzzing Specifications

As a final step, our tool is able to export the state machine

and message format descriptions to the XML-based protocol

specification format used by the Peach fuzzing platform [19].
Fuzzing is a black-box software testing technique that

is based on the principle of feeding an application with

random input, while observing crashes or other undesired

behavior [33]. To achieve better code coverage of the tested

application, advanced fuzzers (such as Peach [19]) generate

test data based on the grammar of the file formats or

network messages understood by the target application (we

refer the reader to [34] for a recent overview of fuzzing

techniques). Unfortunately, without any knowledge of the

protocol state machine, a (stateful) network protocol cannot

be effectively fuzzed. The reason is that a server will

typically discard messages with types that are not acceptable

in the current protocol state. Thus, stateful protocol fuzzers

such as Snooze [35], additionally use a specification of a

protocol state-machine to reach deep protocol states.
Prospex is able to automatically extract a grammar for

protocol messages, as well as a protocol state machine;

stateful, grammar-based fuzzing is, therefore, a natural appli-

cation. We chose to leverage an existing tool for fuzz testing,

and selected Peach [19], mainly because it is an open-source

project under active development, and it provides most of

the required features. The main limitation of Peach was the

limited support for statefulness. To address this limitation,

we contributed to the design and development of improved

statefulness features for Peach, which have been integrated

into release 2.2. To use Prospex specifications for fuzzing,

we simply translate the message formats and state machine

extracted by our tool to Peach XML. The Peach fuzzing

framework then provides all the mechanisms necessary to

perform stateful fuzz testing of real-world applications that

implement the target protocol.

3. Evaluation

We have tested our tool on a number of applications that

implement stateful, application-layer protocols. In particular,

we chose a bot protocol, SMB, SMTP and SIP, as they are

all stateful protocols implemented in complex server appli-

cations that are widely deployed. Because of a limitation of

our current system (our taint tool only runs under Linux),

we only analyzed server programs that are available to us as

Linux binaries. However, this does not represent a general

limitation of our approach.

The quality of the specifications produced by our tool is

limited by the quality and variety of the data used to train it.

As for all trace-based approaches, our system cannot learn

behaviors that do not occur in the training data. For the

purpose of this evaluation, we trained our system using small

datasets that covered a meaningful subset of the functionality

of each protocol, such as using SIP to perform phone calls

or SMB to browse shared files and folders. The goal of this

evaluation is to demonstrate that, provided suitable training

data, we can produce accurate state machines and message

formats for complex, stateful protocols. Furthermore, our

tool can help a human malware analyst to understand a

previously-unknown malware protocol. Finally, we show that

we can automatically generate fuzzing specifications that are

subsequently used to find security vulnerabilities in real-

world server programs.

3.1. State Machine Inference

We applied our system to one malware protocol (Agobot

C&C), two text-based protocols (SMTP, SIP), and one bi-

nary protocol (SMB). For each protocol, the system created

state machines that ranged from four states (Agobot) to 13

states (SMB).

Agobot. We selected the well-known Agobot as the malware

example. The reason is that Agobot implements a custom

C&C protocol and is representative for a whole family

of bots, for example, Phatbot and Forbot [36]. For C&C,

Agobot uses a text-based protocol that resembles the IRC

protocol. However, the malware author has extended the

protocol by incorporating additional command keywords.

These commands typically trigger malicious bot behavior,

for example, spreading via scanning and remote exploits,

relaying traffic, or downloading binaries from the web. The

automatic analysis of bots can provide valuable information

about the malware’s communication protocol and the avail-

able commands, which can help an analyst to better and

faster understand the bot’s internal functionality.

For our experiments, we set up an IRC server and

configured an Agobot instance such that the bot connected

to a local IRC channel, listening for commands. We then

mimicked a bot herder, issuing several commands to the bot

while monitoring it. We then ran our tool on the collected

traces and obtained the state machine in Figure 5. Moreover,

the system has correctly produced format specifications for

the commands that we sent to the bot. Of course, for a more

realistic scenario, it would be desirable to trace the bot while

a real bot herder is issuing commands.

0

PING
1login

3

mac.logout

bot.die

PING

bot.dns

bot.status

2

redirect.tcp

mac.logout

bot.die

redirect.stop

redirect.tcp

bot.status

PING

bot.dns

Figure 5. Inferred state machine for Agobot command
and control protocol.

SMTP protocol. As an example of an application that

implements a stateful, text-based protocol, we have cho-

sen the widely-deployed mail transport agent sendmail

(version 8.13.8). The application implements SMTP (Simple

Mail Transfer Protocol). To infer the state machine, we first

recorded 16 SMTP application sessions on our group’s e-

mail server. We then replayed this small training set to

a sendmail server instance that we were tracing. Figure 6

shows the SMTP state machine that our system inferred. It

can be seen that two different message types were created

for each the MAIL FROM and RCPT TO commands. This

is due to the fact that those mail clients that initially send

an EHLO command are typically using extended options

(additional flags and keywords) in subsequent SMTP com-

mands (for example “ORCPT” in the RCPT TO command).

Because of the resulting, different message formats, our

system distinguishes between simple and extended versions

of these SMTP commands.

Server Message Block (SMB) protocol. As an example

of a complex, stateful, binary protocol, we have chosen

SMB/CIFS. In our experiments, we used version 3.0.26a

of the Samba software suite, and traced the smbd daemon

while using the smbclient utility to browse shared di-

rectories, performing common operations such as writing,

reading, and deleting files and directories. Using this setup,

we produced a training set of 31 recorded sessions. The

state machine inferred from the SMB dataset can be seen

in Figure 7. The login sequence leading to State 3 is

clearly visible. After that, when the DFS (distributed file

system) option is enabled, the client first connects to the

IPC$ share to obtain a DFS referral for the requested share.

Otherwise, the client directly connects to the requested share

in State 6. In this state, most of the file system operations

are available. Operations on a file are performed by opening

the file, reading or writing, and finally closing it (States 8-

10). According to this state machine, only one file may be

opened at any given time. Of course, this is not a limitation

of the SMB/CIFS protocol, but a peculiarity of how the

smbclient tool employs it. In fact, smbclient always

closes a file before operating on the next one. Finally, notice

that States 11 and 12 are artifacts of our system, caused by

the limited variety of the training set. The reason is that, in

the training set, “DELETE” and “QUERY DISK” requests

were always preceded by find requests. This highlights the

dependence of our system on the quality and variety of data

in the training set.

Session Initiation Protocol. The text-based Session Initia-

tion Protocol (SIP) [37] is used for setting up and controlling

communication connections. In our experiment, we traced

the well-known, open-source telephony server Asterisk

[38] (version 1.4.0), which is typically used as part of a

Voice-Over-IP (VOIP) infrastructure. Our test environment

consisted of three (virtual) machines, one of them running

the Asterisk server, while the two other additional machines

served as clients. In our test configuration, we created two

SIP peers, each including a voice box. The client machines

had installed either CounterPath Corporation’s proprietary

softphone X-Lite [39] (version 2.0) or the open-source

softphone Ekiga [40] (version 2.11). To simulate different

client behavior, the softphones were configured to either

automatically answer incoming calls using a built-in auto-

answer feature, automatically answer after a short delay

(e.g., permit ringing) by using a GUI automation tool [41],

or to not answer at all (triggering the voice box). Then, we

initiated a number of phone calls to these peers by using a

softphone, including simultaneous phone calls on multiple

lines. These training calls were used by our tool to generate

protocol specifications for the observed call initialization

use-cases. Figure 8 shows the SIP state machine.

3.2. Quality of Protocol Specifications

To evaluate the quality of the protocol specifications

inferred by Prospex, we need to assess their soundness

0

1HELO

9

EHLO

2MAIL FROM 1 36RCPT TO 1

RCPT TO 1

43

QUIT

41

DATA

40

RCPT TO 2

QUIT

DATA

10
MAIL FROM 2 RCPT TO 2

42
EMPTY CONTENT

CONTENT

QUIT

Figure 6. Inferred state machine for the SMTP protocol.

0 1

NEGOTIATE

PROTOCOL

REQUEST

11

6

DELETE

QUERY DISK

12

ECHO

QUERY DISK

2

SESSION

SETUP

negotiate

7

3

SESSION

SETUP

authenticate

FIND 2

FIND 1

FIND 3

TREE

DISCONNECT

CREATE

DIRECTORY

QUERY FILE

BASIC INFO

ECHO

DELETE

DIRECTORY

8
OPEN

TREE

CONNECT

4

TREE

CONNECT

ipc$

5

GET DFS

REFERRAL

TREE

DISCONNECT

ipc$

9

READ

10

READ

CLOSE

QUERY FILE

ALL INFO

WRITE

Figure 7. Inferred state machine for the SMB/CIFS protocol.

0 1
REGISTER

3

ALIVE

4

Trying

ALIVE

2INVITE
ACK

ALIVE

OK

ALIVE

Figure 8. Inferred state machine for the SIP protocol.

and completeness. For the purpose of this paper, we say

that a protocol specification is complete if it is not overly

restrictive. That is, the protocol specification accepts (parses)

valid protocol sessions. Conversely, we say that a protocol

specification is sound if it is not overly permissive. That is,

it rejects invalid protocol sessions.

As for all trace-based approaches, the completeness of

inferred specifications is limited by the variety of behaviors

observed in the training data. Therefore, we evaluate com-

pleteness with respect to the subset of protocol functionality

that was exercised during training. For instance, for the SMB

protocol we take into account the browsing of shared files

and directories, but not the use of printing services.

3.2.1. Protocol Completeness. In the first step, we demon-

strate that our protocol specifications are complete. To this

end, we used our protocol specifications to parse real-world

network traces (that were not part of the training data)

of SMTP, SMB, and SIP traffic . Note that this shows

the completeness of both the message formats and the

state machines inferred by our tool. The reason is that,

for successful parsing, Prospex has to correctly determine

the format of each individual message and recognize their

correct ordering.

For parsing, we used an enhanced version of the single

message parser presented in [17], which includes support for

multiple states. Each result was achieved by using the value

of k where the generalized Dunn index reaches its maximum

(as discussed in Section 2.2.2).

SMTP results. For SMTP, we recorded our group’s

Postfix [42] e-mail server traffic (incoming traffic on port

25) during a period of four weeks. Then, we split the dumps

into TCP sessions and parsed them, using the automatically-

generated SMTP protocol specification with k = 10.

Out of 31,903 total sessions, we were able to parse 29,832

sessions (93.5%) successfully. We found that the remaining

2,071 sessions (6,5%) were all using TLS encryption, which

we cannot handle properly as one of the limitations of

our system is its inability to handle encrypted traffic. This

shows that our system can fully parse (unencrypted) real-

world traffic, generated by a number of clients and sent to

a different mail server implementation than the one used to

infer the protocol specifications.

SMB results. To test our SMB protocol specification, we

used smbclient to browse shared directories on both

Windows and Linux servers, and recorded 80 sessions. For

k = 23, only 8 sessions fail to parse. We examined these

sessions and determined that parsing fails because of (1)

error conditions not present in the training set (such as

attempting to read from a non-existing file), (2) writing of

long files; a limitation of our training set was that only

short files were written, small enough to be sent in a single

write message, and (3) insufficient generalization of the state

machine (as discussed in Section 2.3, states 11 and 12 in

Figure 7 are artifacts of our system).

SIP results. For generating SIP traffic, we used

X-Lite [39] to initiate phone calls to different SIP peers

in a laboratory Voice-Over-IP environment. We recorded a

set of 80 SIP sessions during these calls. Using the state

machine for the indicated optimum of k = 6, we were able

to parse all of the traffic successfully.

3.2.2. Protocol Soundness. In the next step, we evaluate

the soundness of the inferred specifications.

Soundness of the Message Formats. To show that our

protocol specifications are not overly permissive, we first

need to demonstrate that the inferred message format for

each cluster is not too general, as it should neither parse

arbitrary messages nor messages that have a different type.

To this end, we compute the message format specificity.

Initially, we manually label every message in the training

set with its actual message type (such as “HELO” or “TREE

CONNECT”). Then, we mark each cluster with the message

label of the majority of its messages (while, ideally, all

messages in a cluster would share the same label, this step is

necessary if different message types are incorrectly clustered

together). In the next step, we select a certain cluster. Then,

we find all training set messages that are not labeled with

the label of this cluster. These messages are then parsed

with the cluster’s message format. When the clustering phase

was successful and the message formats are sound (not too

general), we would expect most parsing attempts to fail. This

step is then repeated for all clusters. Finally, we calculate the

ratio r of successfully parsed messages to the number of total

parsing attempts. The format specificity is then computed as

1 − r.

For the value of k where the Dunn index reaches its

maximum, our tool achieves a message format specificity

of 1 for all four datasets (Agobot, SMTP, SMB and SIP).

This means that (a) no cluster contains messages of multiple

types, and (b) the message format for a cluster does not parse

any messages of a different type.

Soundness of the State Machines. The next goal is to

evaluate the soundness of the inferred state machines. To do

so, we require a reference state machine for each protocol.

We created these reference state machines manually, using

information from specification documents (if available), and

integrating it with our own testing and reverse engineering

efforts. Clearly, our tool cannot learn parts of the protocol

that were not exercised in our training data, so we do not

include them in the reference state machine. We then per-

formed n (for n = 50, 000) random walks over our inferred

state machine, generating n sessions that our specification

considers valid. These sessions were fed to the reference

state machines. The idea is that an overly permissive state

machine would generate sessions that are not recognized by

the true protocol. We found that, for all four protocols, all

sessions were accepted. Thus, our inferred state machines

are sound.

3.3. Comparative Evaluation

The previous section has shown that our techniques allow

us to infer accurate specifications. However, there exist

alternative approaches to infer an automaton from positive

examples only. One popular approach is based on the

minimum message length (MML) principle [43]. According

to this principle, a solution should minimize the length of

the description of the state machine together with the dataset

it tries to account for. Since minimizing this quantity is an

NP-complete problem, several approximate algorithms have

been proposed to attempt to solve it. The sk-strings algo-

rithm [44] is one such algorithm, which has previously been

applied to mine specifications [45] of a software component

from program execution traces. The authors of [44] also

introduced the beams algorithm [46], which outperforms sk-

strings. We obtained the implementations of both algorithms

from the authors [47].

To compare the performance of previous techniques with

our system, we leverage the precision and recall metrics in-

troduced in [48]. Precision is closely related to the soundness

metric described in the previous section. It measures the ratio

of sequences generated by a random walk over the inferred

automaton that are accepted by the reference automaton.

Conversely, recall measures the ratio of sequences generated

by the reference automaton that are accepted by the inferred

automaton. It is a measure of completeness. For details on

how these metrics are computed, we refer the reader to [48].

Results are shown in Table 1. For sk-strings, we show

results using the OR heuristic (which was the best performer

in [44]) and the AND heuristic (which is evaluated in [48]).

We run sk-strings with tail lengths of 1, 2 and 3 and s =
0.5, 0.75, 1, and select the best solution based on MML.

Similarly, we run the beams algorithm with beam widths

of 1, 2, 4, 8, 16 and 32.

Prospex clearly outperforms previous tools on all four

datasets. The sk-strings algorithm using the OR heuristic

does not produce sound results on most datasets (P ≃ 0.12).

Sk-strings with the AND heuristic and beams produce better

results. However, only Prospex consistently provides a sound

state machine (P = 1). Previous algorithms over-generalize

on at least one dataset. Somewhat surprisingly, neither sk-

strings nor beams succeed in learning a state machine for

the rather simple Agobot dataset.

Agobot SMTP SMB SIP
P R P R P R P R

Prospex 1 1 1 1 1 .58 1 1
beams .56 1 .89 1 1 .50 1 1
skstrings(and) .79 .20 1 .88 1 .30 1 .01
skstrings(or) .11 .92 .11 1 .12 .62 1 1

Table 1. Precision (P) and Recall (R) of inferred

automata with respect to reference automaton.

3.4. Robustness of k

In this section, we examine the robustness of our tool to

the choice of the parameter k, the number of message types

(clusters) that need to be provided as input to the clustering

algorithm. The number of clusters is a trade-off between

soundness and completeness. With too many clusters, we

expect the inferred model to be sound but over-specific,

and therefore incomplete. Conversely, with too few clusters,

we expect a complete but over-permissive (unsound) model.

We wish to demonstrate that, for a relatively large range

of values for k, Prospex produces a sound and complete

protocol specification. Therefore, we measure the following

two properties over a range of values for k:

Parsing success rate. To compute this property, we use

the generated protocol specification for each k to parse

network traces of real-world traffic, and measure the ratio of

successfully parsed sessions to the total number of sessions.

This is a measure of completeness, so we expect it to to

decrease as k increases.

Message format specificity. This is the property introduced

in Section 3.2.2. It is a measure of soundness, so we expect

this property to increase as k increases. The reason is that

more clusters imply fewer messages per cluster, so the

message formats for each cluster become more specific.

In Figure 9, we show both properties for the SMTP and

SMB protocols over a range of values for k. In addition,

the figures show the generalized Dunn index, which, as

described in Section 2.2.2, is used to choose the value of

k. The Dunn index is normalized to the (0, 1) range. It can

be seen that the maximum of the Dunn index correlates with

the optimal choice of k with regard to parsing quality and

message specificity. This confirms that the Dunn index is a

good predictor to select k, resulting in protocol specifications

that are specific and successful in parsing.
Specifically, in Figure 9(a), the Dunn index reaches its

maximum at k = 10. This corresponds to the optimal parsing

 0

 0.2

 0.4

 0.6

 0.8

 1

 6 8 10 12 14 16 18 20

k

Dunn Index
Parsing success

Format specificity

(a) SMTP

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30

k

Dunn Index
Parsing success

Format specificity

(b) SMB

Figure 9. Robustness of k

results and a message format specificity of 1, which demon-

strates the suitability of our approach. Similarly, Figure 9(b)

shows that values of k around the choice of 23 (between

22 and 25) produce high parsing results, while having a

message format specificity of 1.

3.5. Exbar Performance

We allowed Exbar to run for up to 5 minutes for each

value of k, and were able to infer state machines of up to

25 states (starting from state trees with over 200 states).

For the optimal values of k, selected using the Dunn index,

Exbar terminated in less than 0.03 seconds for all of our test

cases. Nonetheless, for very large values of k, Exbar might

not terminate in the allotted time. In such cases, approximate

algorithms could be used instead [31], but a better solution

is to increase the size of the training set, since DFA learning

is harder when the training set is sparse (as was empirically

demonstrated by the Abbadingo competition [49]).

3.6. Fuzzing Experiments

As discussed in Section 2.4, our system can be used to

create input specifications for the Peach fuzzer. This allows

the fuzzer to use the automatically inferred state machine

while fuzzing the message’s field values according to the

inferred field types.

SMB fuzzing. We automatically converted the protocol

specifications generated by Prospex for the SMB/CIFS pro-

tocol into more than 2,100 lines of Peach XML. This allowed

us to use Peach to fuzz the latest versions of the Samba

server and the Windows XP SMB/CIFS implementation.

Unfortunately, we did not find any vulnerabilities in these

programs. This may be due to the fact that both are mature,

widely-deployed services that have been patched for many

vulnerabilities related to input validation errors in the past.

Therefore, we target an older version of Samba (version

3.0.2a, which is subject to an arbitrary file access vulnerabil-

ity [50]) to validate our tool. By searching the network traces

captured during the fuzzing run, we were able to verify

that the fuzzer had been able to find the vulnerability. More

specifically, the fuzzer downloaded the /etc/passwd file,

which should not have been accessible through the SMB

service. The /etc/passwd file is commonly used to test

for file traversal vulnerabilities on UNIX variants. Notice

that successful exploitation of this vulnerability requires the

fuzzer to navigate deep into the protocol state machine (to

State 10 in Figure 7). Furthermore, this attack is only possi-

ble because the message format inference has automatically

identified a field in the “OPEN” message as a file name.

Peach only makes directory traversal attempts on fields that

are marked as file names.

SIP fuzzing. We generated fuzzing specifications for SIP

and ran the Peach fuzzer on the Asterisk server. After

checking the fuzzer logs, we noticed that sending the server

an “OK” message with status code “0” triggered a segmen-

tation fault that crashed Asterisk. This could be used to

launch a denial-of-service (DOS) attack. For the server to

successfully accept and parse the message that crashes it,

the fuzzer has to navigate successfully to State 4 in the SIP

state machine (shown in Figure 8). Finding vulnerabilities of

this kind by using stateless fuzzing is practically infeasible.

Even though we found this to be a known vulnerability [51]

that has already been addressed in the newest versions of

Asterisk, it shows that our system is capable of creating

fuzzing specifications that can be used to automatically find

vulnerabilities in real-world software.

4. Related Work

Protocol reverse engineering is not a new concept. Since

proprietary, closed protocols started to emerge on the In-

ternet (e.g., such as the OSCAR protocol, used by ICQ

and AIM [52]), there has been interest to reverse engineer

these protocols with the goal of providing free, open-source

alternatives. For example, Samba [53] aims to offer a free

implementation of the Microsoft SMB/CIFS file sharing

protocol. Although popular, protocol reverse engineering is

still a largely manual task. It is tedious and labor-intensive.

Session replay. The first automated protocol analysis ap-

proaches emerged within the context of honeypots. In order

to capture malicious code that delivers its payload after a

series of interactions over the network, researchers started

working on systems that could replay application sessions

automatically. To this end, systems such as RolePlayer [12]

and ScriptGen [13], [14] analyze network traffic and attempt

to generalize the traces so that correct replies can be

generated to new requests. Although useful, the main focus

of these systems is not to reverse engineer and understand

the entire protocol that is analyzed, but to continue the

interaction with a malicious program long enough so that its

payload can be intercepted. Hence, these systems only focus

on the protocol format to the extent necessary for replay, in

particular, on the recognition of fields that contain cookie

values or IP addresses. ScriptGen is the only previous work

that attempts a kind of state machine inference. However,

the proposed technique is limited because no generalization

takes place. Thus, the resulting state machine is a tree,

similar to the APTA in Section 2.3.1, which can only parse

sessions identical to those previously observed.

Protocol analysis. Reacting to the emerging need for the au-

tomated analysis and reverse engineering of entire protocols,

systems were proposed that attempt to discover the complete

protocol format. In [54], the authors propose to apply bio-

informatics techniques (such as sequencing algorithms) to

network traffic. The goal of the system is to identify protocol

structure and fields with different semantics. In [11], an

improved technique was proposed that uses recursive and

type-based clustering instead of byte-wise alignment. The

advantage of such network trace-based approaches is that

it is straightforward to gather large datasets for training.

Their shortcoming is that network traces provide a limited

amount of information and no information on field seman-

tics, making classification of messages into types extremely

challenging.

Recently, four approaches were presented that propose

to extract protocol information by observing the execution

of a program while it processes input messages [15]–[18].

However, these systems focus on reversing message formats,

and leave state machine inference for future work.

Specification mining. Automatically extracting a protocol

state machine from a set of observed protocol interactions is

related to the problem of extracting temporal specifications

for software components (such as API or method call

sequences) from program traces [45], [55]–[58]. Here, we

focus on how work in this field performs state machine

inference. In [55], each relevant event is directly mapped

to a state in the automaton. This approach is not suitable

for protocol inference, where typically there exist message

types that are valid in many different states (such as the

“ALIVE” message in Figure 8). In [45], the sk-strings

algorithm is used to infer a state machine. As discussed

in Section 3.3, this algorithm does not provide acceptable

performance for most of our datasets. Other works [56],

[57] only infer properties conforming to simple patterns,

such as alternation between two events. Finally, [58] uses

an active learning approach, and learns state machines

using the L∗ algorithm [59]. The L∗ algorithm requires a

teacher that can answer membership queries. In [58], the

teacher is implemented using model checking techniques.

This approach cannot be easily applied to network protocol

inference.

Automated white-box testing. Performing fuzzing of an

application based on an automatically reverse-engineered

network protocol is related to concolic testing [60], white-

box fuzzing [61], [62], and related approaches [63], [64].

These techniques leverage symbolic execution of a target

application to generate test cases that provide better code

coverage than black-box fuzzing approaches. They have

been successfully applied to a wide variety of software

such as Linux file system implementations [65], the entire

GNU coreutils [64], and the JavaScript interpreter of Internet

Explorer 7 [62]. To the best of our knowledge, none of these

tools have yet been applied to real-world implementations

of stateful network protocols. Also, we believe that these

techniques are complementary to ours. That is, symbolic

execution could be added to Prospex to overcome some

of its limitations, such as its inability to express arbitrary

relationships between protocol fields. Conversely, the pro-

tocol specifications generated by Prospex could be used to

enhance white-box fuzzing of complex network applications

by leveraging a grammar-based constraint solver [62].

5. Conclusions

In this paper, we presented Prospex, a system to automat-

ically extract application layer protocol specifications. Our

system monitors the execution of a (server) program that

processes network input. Based on the recorded execution

traces, the tool produces accurate message format specifi-

cations for different types of messages and a generalized

protocol state machine.
Our technique proceeds in three main steps: First, we split

application sessions into individual messages and extract

their formats. The second step is responsible for clustering

similar messages. The notion of similarity is established not

only by comparing message formats, but also by analyzing

the overall behavior of the server in reaction to each input.

Based on the clusters, we can assign a type to each message,

a process that required manual analysis in previous work.

Finally, the third step infers a generalized protocol state

machine that reflects the sequences in which messages may

be exchanged.
Our experiments demonstrate that the presented approach

works well in practice. Our system can analyze real-world

programs, producing specifications for complex protocols

such as SMB/CIFS. Moreover, our system is able to help

malware analysts by automatically reverse-engineering a

non-standard protocol used by a malicious bot program. Ad-

ditionally, our system can create detailed input specifications

for a stateful fuzzer.

Acknowledgment

This work has been supported by the Austrian Science

Foundation (FWF) and by Secure Business Austria (SBA)

under grants P-18764, P-18157, and P-18368, by the French

National Research Agency (ANR) through project VAM-

PIRE and by the European Commission through project

FP7-ICT-216026-WOMBAT. The authors would like to

thank Michael Eddington and Hanifi Güneş for their work

on Peach fuzzer.

References

[1] P. Oehlert, “Violating Assumptions with Fuzzing,” IEEE
Security and Privacy, vol. 3, no. 2, 2005.

[2] R. Kaksonen, M. Laakso, and A. Takanen, “Software Security
Assessment through Specification Mutations and Fault Injec-
tion,” in IFIP Joint Working Conference on Communications
and Multimedia Security (CMS), 2001.

[3] V. Paxson, “Bro: A System for Detecting Network Intruders
in Real-Time,” in Usenix Security Symposium, 1998.

[4] R. Pang, V. Paxson, R. Sommer, and L. Peterson, “binpac:
A yacc for writing application protocol parsers,” in Internet
Measurement Conference (IMC), 2006.

[5] N. Borisov, D. Brumley, H. J. Wang, J. Dunagan, P. Joshi, and
C. Guo, “A Generic Application-Level Protocol Analyzer and
its Language,” in 14h Symposium on Network and Distributed
System Security (NDSS), 2007.

[6] S. Venkataraman, J. Caballero, P. Poosankam, M. Kang, and
D. Song, “Fig: Automatic Fingerprint Generation,” in Sym-
posium on Network and Distributed System Security (NDSS),
2007.

[7] D. Brumley, J. Caballero, Z. Liang, J. Newsome, and D. Song,
“Towards Automatic Discovery of Deviations in Binary Im-
plementations with Applications to Error Detection and Fin-
gerprint Generation,” in Usenix Security Symposium, 2007.

[8] D. Dagon, G. Gu, C. Lee, and W. Lee, “A Taxonomy of
Botnet Structures,” in Annual Computer Security Applications
Conference (ACSAC), 2007.

[9] P. Porras, H. Saidi, and V. Yegneswaran, “A Multi-perspective
Analysis of the Storm (Peacomm) Worm,” Computer Science
Laboratory, SRI International, Tech. Rep., 2007.

[10] “Danmec / Asprox SQL Injection Attack Tool Analysis,”
http://www.secureworks.com/research/threats/danmecasprox/
?threat=danmecasprox, 2008.

[11] W. Cui, J. Kannan, and H. Wang, “Discoverer: Automatic
Protocol Reverse Engineering from Network Traces,” in 16th
Usenix Security Symposium, 2007.

[12] W. Cui, V. Paxson, N. Weaver, and R. Katz, “Protocol-
Independent Adaptive Replay of Application Dialog,” in
13th Symposium on Network and Distributed System Security
(NDSS), 2006.

[13] C. Leita, M. Dacier, and F. Massicotte, “Automatic Handling
of Protocol Dependencies and Reaction to 0-Day Attacks
with ScriptGen-based Honeypots,” in Symposium on Recent
Advances in Intrusion Detection (RAID), 2006.

[14] C. Leita, K. Mermoud, and M. Dacier, “ScriptGen: An Au-
tomated Script Generation Tool for Honeyd,” in 21st Annual
Computer Security Applications Conference (ACSAC), 2005.

[15] J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot:
Automatic Extraction of Protocol Format using Dynamic
Binary Analysis,” in 14th ACM Conference on Computer and
Communications Security (CCS), 2007.

[16] Z. Lin, X. Jiang, D. Xu, and X. Zhang, “Automatic Pro-
tocol Format Reverse Engineering through Context-Aware
Monitored Execution,” in 15th Symposium on Network and
Distributed System Security (NDSS), 2008.

[17] G. Wondracek, P. Milani Comparetti, C. Kruegel, and
E. Kirda, “Automatic Network Protocol Analysis,” in 15th
Symposium on Network and Distributed System Security
(NDSS), 2008.

[18] W. Cui, M. Peinado, K. Chen, H. Wang, and L. Irun-Briz,
“Tupni : Automatic Reverse Engineering of Input Formats,” in
ACM Conference on Computer and Communications Security
(CCS), 2008.

[19] “Peach Fuzzing Platform,” http://peachfuzzer.com, 2008.
[20] L. Kaufman and P. Rousseeuw, Finding Groups in Data: An

Introduction to Cluster Analysis. Wiley, 1990.
[21] K. J. Lang, “Faster Algorithms for Finding Minimal Consis-

tent DFAs,” NEC Research Institute, Tech. Rep., 1999.
[22] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosen-

blum, “Understanding Data Lifetime via Whole System Sim-
ulation,” in Usenix Security Symposium, 2004.

[23] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham, “Vigilante: End-to-End Contain-
ment of Internet Worms,” in 20th ACM Symposium on Oper-
ating Systems Principles (SOSP), 2005.

[24] J. Crandall and F. Chong, “Minos: Control Data Attack Pre-
vention Orthogonal to Memory Model,” in 37th International
Symposium on Microarchitecture (MICRO), 2004.

[25] Z. Wang, X. Jiang, W. Cui, and X. Wang, “ReFormat:
Automatic Reverse Engineering of Encrypted Messages,” NC
State University, Tech. Rep. 2008-26, 2008.

[26] S. Needleman and C. Wunsch, “A General Method Applicable
to the Search for Similarities in the Amino Acid Sequence of
Two Proteins,” Journal of Molecular Biology, vol. 48, no. 3,
1970.

[27] P. Jaccard, “The Distribution of Flora in the Alpine Zone,”
The New Phytologist, vol. 11, no. 2, pp. 37–50, 1912.

[28] J. Dunn, “Well Separated Clusters and Optimal Fuzzy Parti-
tions,” Journal of Cybernetics, vol. 4, 1974.

[29] N. R. Pal and J. Biswas, “Cluster Validation Using Graph
Theoretic Concepts,” Pattern Recognition, vol. 30, no. 6,
1997.

[30] E. M. Gold, “Language Identification in the Limit,” Informa-
tion and Control, vol. 10, no. 5, 1967.

[31] M. Bugalho and A. L. Oliveira, “Inference of Regular Lan-
guages Using State Merging Algorithms with Search,” Pattern
Recognition, vol. 38, no. 9, 2005.

[32] E. M. Gold, “Complexity of Automaton Identification from
Given Data,” Information and Control, vol. 37, no. 3, 1978.

[33] B. Miller, L. Fredriksen, and B. So, “An Empirical Study
of the Reliability of UNIX Utilities,” Communications of the
ACM, vol. 33, no. 12, 1990.

[34] M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force
Vulnerability Discovery, 1st ed. Addison-Wesley, 2007.

[35] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kem-
merer, and G. Vigna, “Snooze: Toward a Stateful Network
Protocol Fuzzer,” in Proceedings of the 9th Information
Security Conference (ISC), 2006.

[36] T. Holz, “A Short Visit to the Bot Zoo [Malicious Bots
Software],” Security & Privacy, IEEE, vol. 3, no. 3, 2005.

[37] “RFC 3261 - SIP: Session Initiation Protocol,” http://www.
ietf.org/rfc/rfc3261.txt, 2008.

[38] “Asterisk: The Open Source PBX and Telephony Platform,”
http://www.asterisk.org, 2008.

[39] “X-Lite softphone,” http://www.counterpath.com, 2008.
[40] “Ekiga - Free your speech,” http://www.ekiga.org, 2008.
[41] “The Linux Desktop Testing Project,” http://ldtp.freedesktop.

org, 2008.
[42] Wietse Venema, “Postfix,” http://www.postfix.org, 2008.
[43] C. Wallace and M. Georgeff, “A General Objective for Induc-

tive Inference,” Department of Computer Science, Monash
University, Tech. Rep., 1983.

[44] J. Patrick and P. North, “The sk-strings Method for Inferring
PFSA,” in Workshop on Automata Induction, Grammatical
Inference and Language Acquisition at the 14th International
Conference on Machine Learning (ICML97), 1997.

[45] G. Ammons, R. Bodı́k, and J. R. Larus, “Mining Specifica-
tions,” SIGPLAN Not., vol. 37, no. 1, 2002.

[46] A. Raman, P. Andreae, and J. Patrick, “A Beam Search Algo-
rithm for PFSA Inference,” Pattern Analysis and Applications,
vol. 1, 1998.

[47] “PFSA Toolkit,” http://www.cs.usyd.edu.au/∼rcdmnl/PFSA.
[48] D. Lo and S. Khoo, “QUARK: Empirical Assessment of

Automaton-based Specification Miners,” in 13th Working
Conference on Reverse Engineering (WCRE). IEEE Com-
puter Society, 2006.

[49] K. J. Lang, B. A. Pearlmutter, and R. A. Price, “Results
of the Abbadingo One DFA Learning Competition and a
New Evidence-Driven State Merging Algorithm,” in ICGI
98: Proceedings of the 4th International Colloquium on
Grammatical Inference. Springer-Verlag, 1998.

[50] “Potential Arbitrary File Access,” http://www.securityfocus.
com/archive/1/377618, 2004.

[51] “Asterisk DOS Vulnerability,” http://secunia.com/advisories/
24579, 2007.

[52] A. Fritzler, “UnOfficial AIM/OSCAR Protocol Specification,”
http://www.oilcan.org/oscar/, 2007.

[53] “How Samba Was Written,” http://samba.org/ftp/tridge/misc/
french cafe.txt, 2007.

[54] M. Beddoe, “The Protocol Informatics Project,” in Toorcon,
2004.

[55] J. Whaley, M. C. Martin, and M. S. Lam, “Automatic Ex-
traction of Object-Oriented Component Interfaces,” SIGSOFT
Softw. Eng. Notes, vol. 27, no. 4, 2002.

[56] D. Engler, D. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs
as Deviant Behavior: A General Approach to Inferring Errors
in Systems Code,” in ACM Symposium on Operating Systems
Principles, 2001.

[57] J. Yang and D. Evans, “Perracotta: Mining Temporal API
Rules from Imperfect Traces,” in 28th Internl. Conf. on
Software Engineering (ICSE 2006.

[58] R. Alur, P. Černý, P. Madhusudan, and W. Nam, “Synthesis
of Interface Specifications for Java Classes,” SIGPLAN Not.,
vol. 40, no. 1, 2005.

[59] D. Angluin, “Learning Regular Sets from Queries and Coun-
terexamples,” Inf. Comput., vol. 75, no. 2, 1987.

[60] K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic
Unit Testing Engine for C,” in ESEC/FSE-13: Proceedings

of the 10th European Software Engineering Conference held
jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2005.

[61] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated
Whitebox Fuzz Testing,” in Network and Distributed Security
Symposium (NDSS). Internet Society, 2008.

[62] P. Godefroid, A. Kieżun, and M. Y. Levin, “Grammar-based
Whitebox Fuzzing,” in ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, 2008.

[63] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler, “EXE: Automatically Generating Inputs of Death,”
in 13th ACM Conference on Computer and Communications
Security (CCS), 2006.

[64] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unas-
sisted and Automatic Generation of High-Coverage Tests
for Complex Systems Programs,” in USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2008.

[65] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. Engler,
“Automatically Generating Malicious Disks Using Symbolic
Execution,” in IEEE Security and Privacy, 2006.

[66] R. M. Karp, “”Reducibility Among Combinatorial Prob-
lems”,” in Complexity of Computer Computations. Plenum
Press, 1972.

Appendix A: Prerequisites Inference Algorithm

In this section, we detail the algorithms that we use

to infer the prerequisites described in Section 2.3.2. Al-

gorithm 1, together with Algorithms 2 and 3, computes

prerequisites in the form of Equation 2. A prerequisite for

message type m is specified by the tuple 〈m, r, Ar〉. To

implement the hitting set heuristic and to infer prerequisites

in the form of Equation 3, we replace the call to the

get_required function in Algorithm 1 with a call to

get_required_sets (Algorithm 4).

The hitting_set function in Algorithm 4 finds a

solution to the minimum hitting set problem for sets in Y .

That is, it finds the smallest set ρ of message labels such that

ρ∩y 6= ∅, ∀y ∈ Y . That is, we want to find the minimum

number of message types such that at least one type is

present on any path from the start state to a state where

m is received. The minimum hitting set problem is NP-

complete [66], but we impose the restriction |ρ| ≤ K and

solve it by exhaustive search. The constant K was set to 5 in

our experiments; we do not expect a protocol specification

to have more than 5 message types leading to the same state

transition, or our clustering algorithm to be so inaccurate as

to split messages of a single message type into more than

5 clusters. Since get_required_sets returns a set of

sets, Algorithms 1 and 3 must also be modified accordingly.

Algorithm 1 infer_prerequisites

Input: The set of message types M . The training set

composed of n application sessions S1, .., Sn, where

Si = σi,1, ..σi,|Si| and σi,j ∈ M .

Result: the set of prerequisites P .

for each m ∈ M do

Rm = get required(m)
R =

⋂
m∈M Rm

P = ∅
for each r ∈ R do

Mr = m ∈ M |r ∈ Rm // the set of messages which

share requirement r

Ar = get allowed(r, Mr)
for each m ∈ Mr do

add 〈m, r, Ar〉 to P

Algorithm 2 get_required

Input: A message type m ∈ M . The training set S1, .., Sn.

Result: Rm ⊂ M , the set of msg. types required before m

Y = ∅
for each instance σi,j of m in the training set do

y = {σi,1, .., σi,j−1}
// the set of message types found before σi,j in Si

add y to Y

return
⋂

y∈Y

Algorithm 3 get_allowed

Input: A message type r ∈ M . A set of message types

Mr ⊂ M . The training set S1, .., Sn.

Result: A ⊂ M , the set of message types allowed after r

A = ∅
for each instance σi,j of m in the training set do

consider the application session Si =
σi,1, .., r, σi,k+1, .., σi,j , .. // σi,k = r is the last

occurrence of r in Si before σi,j

a = {σi,k+1, .., σi,j−1}
add a to A

return A

Algorithm 4 get_required_sets

Input: A message type m ∈ M . The training set S1, .., Sn.

Result: Rm ⊂ 2M , the set of requirements for m

Rm = ∅
compute Y as in get required

while (y 6= ∅ ∀y ∈ Y) do

ρ = hitting set(Y)
add ρ to Rm

set y to y − ρ for each y ∈ Y

return Rm

